Using the Anadigm® FPAA to Interface With Sensors – Technical Considerations

Sensor Signal Conditioning Needs

- Common signal conditioning tasks:
 - Amplification
 - Offset removal
 - Rectification
 - Filtering

Sensor Signal Conditioning Needs

Common conditioning tasks

Operating Limits (1):

High Clock Frequencies

Finite OpAmp bandwidth

- Capacitors must charge or discharge within each half clock-cycle
- OpAmp speed affects settling-time

Non-zero switch resistance

 Similar effect on settlingtime

Operating Limits (2):

High Signal Frequencies

Finite OpAmp Gain

 Provided opamp has high open-loop gain and high input-resistance then:

$$\frac{1}{G} = -\frac{R1}{R2}$$

If open-loop gain is not infinite then:

$$\frac{1}{G} = -\frac{R1}{R2} \left(1 + \frac{1}{A} \right) - \frac{1}{A}$$

Operating Limits (3):

Low Clock Frequencies

"Droop"

- The charge that should be stored on a node is:Q = C.V
- This charge will be changed (+ or -) by leakage:

$$\Delta Q_L = I_L.T$$

- So, the error will beError = I_L.T/ C.V
- For a specified max error:

$$T < (C.V)_{min}.Error$$
 $(I_L)_{max}$

So, using some approximate values:

- $C \cong 10^{-11}$ (farad)
- $V \cong 10^{-3}$ to 1 (volt)
- So, $CV \cong 10^{-11}$ to 10^{-14} (coulomb)
- $I_1 \cong 10^{-15} \text{ to } 10^{-18} \text{ (amperes)}$

For a leakage errors of 0.1% or less:

$$T < (C.V)_{min}.Error / (I_L)_{max} \cong 10^{-14}.10^{-3} / 10^{-15} \cong 10^{-2} (secs)$$

We can obtain leakage errors of 0.1% or less for millivolt signals, for sampling frequencies in the low kHz range.

Offset Voltages

Offset errors

- Slight mismatches inside the opamp require balancing with a small input voltage
- Output voltage will have a DC error

Offset Compensation

- "Half-cycle" building blocks allow cancellation of offset voltage
 - GainHalf
 - GainHold
 - RectifierHalf
 - RectifierHold
 - SumDiff
- "Offset-compensated" in one clock phase only (return-to-zero or hold-with-offset in other phase)
- Gain-Bandwidth Product (GBP) and slew-rate are not infinite!
 - Selection of high-gain will limit max clock frequency (and vice versa) of RTZ CAMs

Achieving High-gain

Cascade stages – high-gain at front-end for low-noise

$$V_{noise} = K \cdot \left(\frac{V1_{noise}}{k_1} + \frac{V2_{noise}}{k_1 k_2} + \frac{V3_{noise}}{k_1 k_2 k_3} \right)$$

- Use offset-compensated CAMs when implementing large gains
 - Remember GBP limitations select appropriate clock frequency (but watch anti-aliasing requirements)

Phase Selection

- Some CAMs have outputs which are only valid (or offset-compensated) in one phase
- Make sure input-sampling and output-valid phases match!

Output Waveforms (1)

Staircase outputs:

- □ Use high f_{clock}/f_{signal} ratio to reduce step size and clock noise
- \square Keep $f_{corner}/f_{signal} > 30$ if using output cell filter
- ☐ If output is being sampled (eg by ADC), steps may be desirable!

Output Waveforms (2)

"Final-value" outputs

- Differentiator (and transimpedance amplifier) outputs only reach their final value at the end of a clock phase
- Final-value CAM outputs need capturing by CAMs which sample in one-phase and produce a valid output in the next

- Hold
- Non-inverting GainHalf
- Non-inverting SumDiff
- Non-inverting SumFilter

Input Levels

- Internal signal ground is 2 volts (VMR)
 - Center inputs on 2V if possible (use Wheatstone bridge?)
 - Input range 0 4V
 - Convert external single-ended signals to internal differential signals for max dynamic range

Offset Removal

- Single-ended signals

 apply offset to 2nd
 input pin
- Differential signals –
 apply offset internally
- Using differential signals gives better
 CM noise immunity

Using the Chopper Input

- "Chopping" modulates the input signal with a square wave
 - Low freq noise and DC offsets are pushed out to the clock freq (for easy filtering)
- Slewing and settling limitations mean the chopper output is not "ideal"
 - To recover the "ideal" output, sample in phase2 at twice the chopper frequency
- To boost the gain, use offsetcompensated CAMs, sampling in phase2 at twice the chopper frequency

Noisy Environments

- Use differential signals where noise can be made common-mode
- Use modulated sensor stimulus and synchronous demodulation (lock-in detection)

Phase Detection

Synchronous demodulation

Anti-aliasing and Clock Selection

- Input signal should be band-limited to << f_{clock}/2
 - prevents hf noise adding to lf noise
 - Use a clock at least 5–10 times faster than the maximum signal
- Use continuous-time not SC filtering
 - attenuation at f_{clock}/2 should attenuate any hf signals by the required SNR
 - \circ Keep $f_{corner}/f_{signal} > 30$ if using input cell filter
- Lock-in detection averages out noise & signals except at harmonics of the modulation frequency
 - Anti-aliasing not necessary (but will improve SNR if used)

Temperature-sensing (1)

Thermistors

- □ Resistances range from 100 to 1Mohm
- □ Typical current < 100uA to avoid self-heating

Temperature-sensing (2)

Thermocouples

- Small voltage/degree C
- Prone to high levels of CM noise

Temperature-sensing (3)

Thermopiles

- Serially-interconnected thermocouples with "hot" and "cold" junctions
- "Hot" junction sensitive to received IR radiation
- Close proximity of junctions gives low sensitivity to ambient temperature

Position-sensing (1)

Strain gauges

- Typical output < 10 mV/V</p>
- "Half bridge" has strain gauges in two arms:
 - doubles the output and compensates for thermal effects
- "Full bridge" has strain gauges in four arms:
 - re-doubles output and compensates for thermal effects

Position-sensing (2)

LVDT

- Sensitivity ranges:
 - 0.05 mV/V/0.001" for long stroke LVDTs
 - 10 mV/V/0.001" for short stroke LVDTs
- Various signal processing techniques (eg):
 - Rectify and filter AC signals, then:
 - □ Calculate (VA + VB)/V_{primary} (insensitive to the amplitude of the driving signal, and gives some noise rejection).
 - □ Calculate the **ratio** of the difference and the sum of the secondary voltages i.e. (VA VB) / (VA+VB)
 - Measure the phase of the combined VA + VB secondary voltage i.e. -180 degrees at one extreme, zero degrees at the null position, and +180 degrees at the other extreme.

LVDT-sensing

Magnetic-sensing

Hall effect devices

- Usually driven with a constant current
- Differential output voltage, superimposed on a common-mode voltage approximately equal to half the excitation voltage.

- Typical sensitivity:
 - □ 1-100 mV/kG
 - □ (Refrigerator magnet: 200 gauss)
- Typical element resistance:
 - □ 1 to 10 ohms
- Typical excitation current:
 - □ 20 to 200 mA.
- Typical linearity:
 - □ 0.1% to 2%.

Optical-sensing

Photodiode/transistor

- Photo-generated current develops a voltage across a feedback "resistor"
- Transimpedance is dependent on absolute capacitor values, *not* a capacitor ratio
- Transimpedance CAM
 output is only valid at the
 end of each clock phase –
 follow by an appropriate
 CAM

Sensor Linearization

Sensor Linearization

TransferFunctionCAM

- Quantizes gain use full-scale input and output for minimum non-linearity
- When the input signal is nearly linear, use "delta" information rather than "direct"

Hardware Multiplexing

State-driven dynamic reconfiguration:

