

The FPAA Company
Field Programmable Analog Arrays
real time Analog programmability

Anadigm® FPAA Solutions Training

Class I

Take Control of Your Analog Destiny

- Simplify Your Analog Design
- Gain the Flexibility to Adapt Your Design
- Add New Features and Capabilities to your Systems
- Improve the Manufacturability of Your Design

Anadigm Technology Enables You

- To shorten time to market by reducing analog design complexity
 - Work at a higher level functional level instead of low level components
 - You can be testing analog hardware in a few days
- To differentiate your products with dynamic reconfigurability
 - Design products that adapt to their environment (auto-ranging, auto-calibration, automatic gain control, etc)
 - Design products that change functionality sequentially over time (multiple operating modes)
 - Connect to multiple analog sensors and provide signal chains appropriate for each with one circuit.

Anadigm Technology Enables You (cont)

To future-proof designs

 Allows updates of analog functions in the field or on the production line

To attain cost savings in inventory control and field service

- Consolidation and standardization of board designs that can be utilized across multiple products
- Reduce the cost and complexity of system calibration in production and in the field

To protect your IP of circuit designs.

 The configuration data cannot be reverse engineered back to the original circuit

Anadigm Technology Enables You (cont)

- To implement high accuracy analog circuits in your products
 - Achieves 0.1% functional accuracy
 - □ Chip to chip accuracy ± 0.1%
 - Drift free performance immune to process, temperature and aging

Software Control of Your Analog Design

- Anadigm offers an advance in technology that is distinctive and valuable...
- The capability for pure analog signal processing under real-time software control
 - In-circuit programmability with no interruption in system operation
 - Software control over Analog circuit parameters
 - Software control over Analog circuit configurations

How We're Making It Happen

- Anadigm® combines three powerful design trends from the digital world into the analog domain
 - EDA tools and design modules for complete analog design automation remove the complexity from analog design
 - Specialized architecture for external processor control to allow for in-circuit programmability and software control over analog circuit parameters
 - Reconfigurable CMOS silicon which allows instant creation of complex, high performance analog circuits

Development Tools

Anadigm Designer Overview

AnadigmDesigner[®] 2

- Easy-to-Use
- Intuitive "drag-and-drop" user interface
- Built-in signal generator, oscilloscope
- Built-in, accurate discrete-time behavioral simulator
- Extensive help documentation
- Full version available free from Anadigm website (www.anadigm.com)
- Supports the selection, configuration and interconnect of Configurable Analog Modules (CAM)

Configurable Analog Modules (CAM)

- Circuit building blocks abstracted to a functional level
- Supports true design abstraction
- A complex circuit can be implemented simply by selecting, configuring, and wiring CAMs
- Each CAM has a user interface to set options and limits
- Each CAM has an accurate model for use in timebased simulator

All CAM parameters are user definable and may be changed under software control with 0.1% functional accuracy

- Differential Comparator
- Inverting Differentiator
- Divider
- Bilinear Filter
- Biquadratic Filter
- Half cycle gain stage
- •Half Cycle Sum/Difference Stage
- DC Voltage Source
- Gain Stage with Output Voltage Limiting
- •Gain Stage with Switchable Inputs

Typical CAM Options

- •Half Cycle Inverting Gain Stage (optional hold)
- •Half Cycle Inverting Rectifier (optional hold)
- •Half Cycle Rectifier
- •Gain Stage with Polarity control
- Integrator
- Inverting Gain Stage
- Inverting Sum Stage
- Multiplier
- Rectifier with Low Pass Filter
- Sample and Hold
- Sinewaye Oscillator
- •Transimpedance Amplifier
- User-defined Voltage Transfer Function
- Arbitrary Periodic Waveform Generator
- •Sum/Difference Stage with Low Pass filter
- Analog to Digital Converter (SAR)
- •Voltage-controlled Variable Gain Stage
- •Low Corner Frequency Bilinear Low-Pass Filter
- Sum/Difference Integrator
- Square Root

Customer CAMs

- Another library of CAMs
- Further level of customization for your products
- Integrate your special requirements
- Customer CAMs can be built to your needs.

Mapping Functions to CAMs

Simulator

Anadigm Developers Kits

- Perfect hardware platform to get started with FPAAs
- Evaluation board suitable for development and instant prototyping
- •Three board sizes with 1,2 or 4 FPAA mounted on the PCB
- Part Numbers: AN231K04-SING1

AN231K04-DUAL2

AN231K04-QUAD4

Static Configurability and Dynamic Re-configurability

Static and Dynamic Devices

- All FPAA parts need configuration information loaded when the device first powers up (static configuration)
- Some devices have an additional feature to allow you to change the active configuration while device is operational (dynamic re-configuration)
- Potential uses for dynamic re-
 - Reconfigure the device to match multiple system states
 - Auto calibrate the system at power-up
 - Automatically adjust system to incoming signal characteristics
- Apex devices that support dynamic re-configuration (AN231E04)

How Does Dynamic Reconfiguration Work?

System Update via C-code

- Circuit description available in C-code
- System software can change functionality by making a function call
- Allows the MCU to update the system functionality dynamically

FPAA Applications

Typical FPAA Applications

Complex analog filtering circuits

- Guaranteed and repeatable filter implementation
- Implemented filter is drift-free and immune to aging or component variations
- Make tunable (adaptable) filters within minutes

AnadigmFilter™

Sensor signal conditioning

- Gain, offset correction, linearization, etc.
- Stable and adaptable sensor stimulus
- Correct / adjust for aging, drift, manufacturing variability, etc.
- Improve accuracy, performance and control by providing real time adjustments to range of operation

EDA Tools-AnadigmFilter

EDA Tools-AnadigmFilter - It builds the circuit for you!

Sensor Signal Conditioning - Overview

The FPAA helps meet the following system challenges:

- Sourcing stable references and stimulus
- Multiple sensors with differing signal conditioning needs
- Real time adjustments to range of operation
- Methods of calibration and maintenance
- Correct / adjust for aging, drift, manufacturing variability, etc.
- Manufacturing considerations for multiple boards

Summary

Take Control of Your Analog Destiny

Simplify Your Analog Design

- Reduce design time
- Save engineering costs

Gain the Flexibility to Adapt Your Design

- Easily address unknown/unforeseen design issues
- Quickly modify circuits when specifications change
- A board spin can be replaced with a software change
- And this flexibility can extend all the way to your customer's site
- One PCB can serve many products

Take Control of Your Analog Destiny

Add New Features and Capabilities to your Systems

- Change your analog feature-set while your system runs
- Add new capabilities you could only dream of in the past

Improve the Manufacturability of Your Design

- Automated system calibration and testing on production line
- High integration BOM reduction
- Removes need for high tolerance components

Backup Materials

AnadigmApex (3.3volt) Architecture

Four Configurable Analog Blocks (CABs) controlled by a switch capacitor architecture each containing:

- •2 differential 50MHz op-amps
- •1 differential comparator
- •1 SAR based ADC
- •8 programmable capacitors

- OpAmps contain an Input offset voltage "autonulling" feature. (I/O and core OpAmps)
- SPI configuration interface enables software control
- dualSRAM based configuration for real time state changes and seamless control over analog parameters
- Four type1 "featured" I/O cells, each can be independently powered down or configured as
 - single-ended or differential
 - · an independent differential gain stage
 - differential input filter
 - · input or output sample and hold
 - a bypass wire or digital output
- Three (type2) simple differential I/O cells.
- One chopper stabilized gain stage (G <= 60dB), available to use with Type1 or type2 I/O cells
- Two logic/control signal outputs
- Clock management providing 6 non-overlapping internal clocks, two with variable phase delay
- Look Up Table for arbitrary waveform generation
- Rich pre-built (CAM) library

Switched Capacitors Precise Operation

- <u>Capacitor ratios</u> deliver accurate circuit parameters
 - o Achieves 0.1% functional accuracy
 - Chip to chip accuracy ± 0.1%
- Capacitor ratios deliver drift-free operation
 - o Immune to:
 - Process
 - Temperature
 - Aging

$$\frac{\text{Vout}}{\text{Vin}} = \frac{-\text{R2}}{\text{R1}} = \frac{-1/f_c\text{C2}}{1/f_c\text{C1}} = \frac{-\text{C1}}{\text{C2}}$$

