

The FPAA Company
Field Programmable Analog Arrays
real time Analog programmability

2016 Technical Training, Class IV

What is a Configurable Analog Module (CAM)?

- Circuit building blocks abstracted to a functional level that can be manipulated in AnadigmDesigner[®]2
- A complex circuit can be implemented in a "chip" simply by selecting, configuring, placing and wiring CAMs
- Improved speed and ease of circuit design

AnadigmDesigner®2 CAMs

- Very dynamic powerful yet easy to use
 - Multiple circuit topologies CAM knows how to make what you ask for
 - Dynamic user interface options and limits can change
 - □ Allows user to push the limits of the CAM
 - Constrains the user to legal configurations
- Expanded CAM documentation explains the features

Selecting a CAM

In AnadigmDesigner®2, CAMs may contain multiple circuit configurations. Select the basic function. The details will be set during CAM configuration.

Configuring the CAM - Information

Configuring the CAM - Clocks

Configuring the CAM - Options

Configuring the CAM - Parameters

Parameters - Quantization and Error

 Actual measured values can have error in addition to the quantization of the realized value

$$Gain_{Realized} = 0.02575$$

$$Gain_{Measured} = 0.0259 \Rightarrow 0.6 \% error$$

Parameters - Interrelation

- Limits are dynamic.
 Changing desired values can also change the limits.
 - If Gain 1 = 6.0

Gain 2 cannot be less than 0.0235

- If Gain 2 = .0257

Gain 1 cannot be greater than 6.55

Realized values are based on the combination of capacitor ratios. Changing one desired value can change multiple realized values.

Configuring the CAM - LUT

Configuring the CAM - Finishing

Online CAM Documentation

- Anadigm approved CAMs contain information about CAM construction and proper usage
 - Details about each CAM option
 - Details about each CAM parameter
 - Design Equations
 - Circuit Diagrams
 - Switch Phasing
 - Output Characteristics
- Some include additional design notes with information about special features of that CAM

Placing and Wiring CAMs

- Place the CAM within the chip borders
 - Green warning marker indicates the CAM cannot be dropped on top of something
 - Red warning marker indicates that available resources are not sufficient to implement the CAM
- Draw wires between the CAM contacts
 - Only legal connections will be allowed
- Chips can be connected for simulation

Clock Phases

- Each clock has two non-overlapping phases
- Phase symbol on a CAM input shows an input that samples only on that phase
 - Δφ indicates that the sampling phase changes during operation
- Phase symbol on a CAM output shows the output should be sampled on that phase

- Warning: a phased output can be safely connected only to a similarly phased input
- Always see the CAM documentation for details on input/output characteristics

Clock Delay

- CAMs may have signal delay due to the timing of clocked switches. This is not the same as filter phase delay.
- Clock delay can often be neglected if the clock frequency is adequately higher than the signal frequency

Example – 10 kHz signal CAM has half clock cycle delay

With 50 kHz clock

36 degree delay (possibly significant)

With 1 MHz clock

1.8 degree delay (probably negligible)

Clock delay is not shown by symbol alone

 Always see the CAM documentation for details on input/output characteristics

CAM Files

.cam File

- Primary CAM file
- ASCII based
- Read directly by AnadigmDesigner[®]2
- Strictly formatted, keyword driven with very little error checking

Name, Version, User Interface Control, Circuit Definition, Parameter Calculation, Symbol, Simulation equations, CCODE, etc.

.chm File

- CAM Documentation or Help file
- Compiled HTML
- Referenced and displayed by AnadigmDesigner[®]2

CAM Gain Elements

There are four basic gain topologies that are reused in many CAMs (gain stage, rectifier, summing stage, etc)

- xxxInv
 - Inverting
 - Continuous time the input is not sampled
- xxxHalf
 - Inverting or non-inverting
 - Amplifier input offset compensation
 - Half-cycle (Output is zero during one phase)
 - Subject to clock frequency/gain limitations
- xxxHold
 - Inverting
 - Amplifier input offset compensation for only one phase
- xxxFilter uses a single pole low pass filter
 - Inverting or non-inverting

ANx20 Standard Library - Gain Stages

GainHalf

- Half-cycle
- **GainHold**

- Inverting only
- GainInv

Continuous Time

ANx20 Standard Library - Rectifiers

RectifierFilter

- Full Wave/Half Wave
- Inverting/non-inverting

RectifierHalf

- Full Wave/Half Wave
- Inverting/non-inverting

RectifierHold

Half Wave Inverting only

ANx20 Standard Library - Summing

SumInv

- Oup to three inputs
- SumDiff (SumHalf)

- Oup to four inputs
- Add or subtract since input branches can be inverting or non-inverting

ANx20 Standard Library - Filters

FilterBilinear – One pole

- Low Pass/High Pass/All Pass
- FilterBiquad Two poles

- Low Pass/High Pass/Band Pass/Band Stop
- Automatically chooses from multiple circuit topologies

Some other CAMs use a low pass bilinear filter as part of another function (RectifierFilter)

ANx20 Standard Library - Math

- Differentiator
- d
- Output voltage slews see documentation
- Integrator

Optional reset

ANx20 Standard Library

- Single/Dual Input
- Variable Reference

Hold – Sample and hold

OscillatorSine

- Subject to internal reference voltage error
- Voltage (+/- 3 VDC)

Subject to internal reference voltage error

ANx20 Standard Library - Multiplier

Multiplier

- Uses SAR (Input Y is quantized)
- Subject to internal reference voltage error
- Optional sample and hold on input X to equalize sampling time of two inputs (uses chip resources)

ANx20 Standard Library - LUT

PeriodicWave

Half-cycle/Output Hold

- Uses LUT to generate a user-defined periodic sequence of output voltages
- Documentation has help with loading the LUT

TransferFunction

Half-cycle/Output Hold

 Uses the SAR and LUT to perform A/D conversion on the input and generate the appropriate user-defined output voltage

