2016 Technical Training, Class IV

The FPAA Company
Field Programmable Analog Arrays
real time Analog programmability
What is a Configurable Analog Module (CAM)?

- Circuit building blocks abstracted to a functional level that can be manipulated in AnadigmDesigner®
- A complex circuit can be implemented in a “chip” simply by selecting, configuring, placing and wiring CAMs
- Improved speed and ease of circuit design
AnadigmDesigner®2 CAMs

- **Very dynamic – powerful yet easy to use**
 - Multiple circuit topologies – CAM knows how to make what you ask for
 - Dynamic user interface – options and limits can change
 - Allows user to push the limits of the CAM
 - Constrains the user to legal configurations

- **Expanded CAM documentation explains the features**
Selecting a CAM

In AnadigmDesigner®2, CAMs may contain multiple circuit configurations. Select the basic function. The details will be set during CAM configuration.

- Library: AnadigmApex
- AN231E04
- Name: FilterBiquad
- Description: Biquadratic Filter
- Documentation
Configuring the CAM - Information

- **Instance Name**
 - FilterBiquad
 - Default may be changed
- **Library**
 - ANx20 Standard
- **CAM Description**
 - Biquadratic Filter
- **CAM Version Number**
 - 1.0.0
- **Approval Level**
Configuring the CAM - Clocks

- Set the clock(s)
 - Spinners associate CAM clocks (CLOCKA) with chip clocks (Clock 0) and show the frequency of that chip clock
 - Chip clock frequencies are set in the “Chip Settings” dialog box
- All CAMs in a signal path should use the same chip clock for the analog clock (CAM CLOCKA)
- Some CAM parameters are clock dependent (filter corner frequency)
 - These CAMs should be reconfigured if the clock frequencies are changed
- CAMs with multiple clocks contain instructions about their relation
Configuring the CAM - Options

- CAM Options
 - Option settings control circuit configuration. This is reflected in the symbol. Options and parameters may also change.
 - Options may be gray due to incompatible combinations or unavailable resources.
Configuring the CAM - Parameters

- Parameter Names
 - May include units
- Desired Value
 - Entered by the user
- Parameter Limits
 - Values will be restricted
- Realized Value
 - What was possible for this combination of desired values
Parameters – Quantization and Error

- Realized values show the implementation of the parameter based on ratios of programmable capacitor banks which are quantized.

\[
\frac{6 \text{ unit caps}}{233 \text{ unit caps}} = 0.02575
\]

- Actual measured values can have error in addition to the quantization of the realized value.

\[
Gain_{\text{Realized}} = 0.02575
\]

\[
Gain_{\text{Measured}} = 0.0259 \Rightarrow 0.6\% \text{ error}
\]
Parameters - Interrelation

CAM Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Limits:</th>
<th>Realized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain 1 (UpperInput)</td>
<td>6</td>
<td>0.0100 To 6.55</td>
<td>6.00</td>
</tr>
<tr>
<td>Gain 2 (LowerInput)</td>
<td>0.0257</td>
<td>0.0235 To 100</td>
<td>0.0256</td>
</tr>
</tbody>
</table>

- Limits are dynamic. Changing desired values can also change the limits.
 - If Gain 1 = 6.0
 Gain 2 cannot be less than 0.0235
 - If Gain 2 = 0.0257
 Gain 1 cannot be greater than 6.55

\[
\frac{234 \text{ unit caps}}{39 \text{ unit caps}} = 6.0 \quad \frac{1 \text{ unit caps}}{39 \text{ unit caps}} = 0.02564
\]

- Realized values are based on the combination of capacitor ratios. Changing one desired value can change multiple realized values.
Configuring the CAM - LUT

- Parameter entry to set output voltages
 - Limits
 - Input voltage range that will trigger this output
 - Desired value
 - Realized value
Configuring the CAM - Finishing

Read any notes for help with configuration

- **Documentation**
 - Online help about this CAM
- **Cancel**
 - Discard all changes
- **OK**
 - Accept all changes
Online CAM Documentation

- Anadigm approved CAMs contain information about CAM construction and proper usage
 - Details about each CAM option
 - Details about each CAM parameter
 - Design Equations
 - Circuit Diagrams
 - Switch Phasing
 - Output Characteristics

- Some include additional design notes with information about special features of that CAM
Placing and Wiring CAMs

- Place the CAM within the chip borders
 - Green warning marker indicates the CAM cannot be dropped on top of something
 - Red warning marker indicates that available resources are not sufficient to implement the CAM

- Draw wires between the CAM contacts
 - Only legal connections will be allowed

- Chips can be connected for simulation
Clock Phases

- Each clock has two non-overlapping phases.
- Phase symbol on a CAM input shows an input that samples only on that phase.
 - $\Delta\phi$ indicates that the sampling phase changes during operation.
- Phase symbol on a CAM output shows the output should be sampled on that phase.

Warning: a phased output can be safely connected only to a similarly phased input.

- Always see the CAM documentation for details on input/output characteristics.
CAMs may have signal delay due to the timing of clocked switches. This is not the same as filter phase delay.

Clock delay can often be neglected if the clock frequency is adequately higher than the signal frequency.

Example – 10 kHz signal CAM has half clock cycle delay
- With 50 kHz clock
 36 degree delay (possibly significant)
- With 1 MHz clock
 1.8 degree delay (probably negligible)

Clock delay is not shown by symbol alone.

Always see the CAM documentation for details on input/output characteristics.
CAM Files

<table>
<thead>
<tr>
<th>.cam File</th>
<th>.chm File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary CAM file</td>
<td>CAM Documentation or Help file</td>
</tr>
<tr>
<td>ASCII based</td>
<td>Compiled HTML</td>
</tr>
<tr>
<td>Read directly by AnadigmDesigner®2</td>
<td>Referenced and displayed by AnadigmDesigner®2</td>
</tr>
<tr>
<td>Strictly formatted, keyword driven with very little error checking</td>
<td></td>
</tr>
</tbody>
</table>

Name, Version, User Interface Control, Circuit Definition, Parameter Calculation, Symbol, Simulation equations, CCODE, etc.
CAM Gain Elements

There are four basic gain topologies that are reused in many CAMs (gain stage, rectifier, summing stage, etc)

- **xxxInv**
 - Inverting
 - Continuous time – the input is not sampled

- **xxxHalf**
 - Inverting or non-inverting
 - Amplifier input offset compensation
 - Half-cycle (Output is zero during one phase)
 - Subject to clock frequency/gain limitations

- **xxxHold**
 - Inverting
 - Amplifier input offset compensation for only one phase

- **xxxFilter** – uses a single pole low pass filter
 - Inverting or non-inverting
ANx20 Standard Library – Gain Stages

- **GainHalf**
 - Half-cycle

- **GainHold**
 - Inverting only

- **GainInv**
 - Continuous Time
ANx20 Standard Library – Rectifiers

- **RectifierFilter**
 - Full Wave/Half Wave
 - Inverting/non-inverting

- **RectifierHalf**
 - Full Wave/Half Wave
 - Inverting/non-inverting

- **RectifierHold**
 - Half Wave Inverting only
ANx20 Standard Library – Summing

- **SumInv**
 - Up to three inputs

- **SumDiff (SumHalf)**
 - Up to four inputs
 - Add or subtract since input branches can be inverting or non-inverting
ANx20 Standard Library – Filters

- **FilterBilinear** – One pole
 - Low Pass/High Pass/All Pass

- **FilterBiquad** – Two poles
 - Low Pass/High Pass/Band Pass/Band Stop
 - Automatically chooses from multiple circuit topologies

Some other CAMs use a low pass bilinear filter as part of another function (RectifierFilter)
ANx20 Standard Library – Math

- Differentiator
 - Output voltage slews – see documentation

- Integrator
 - Optional reset
ANx20 Standard Library

- **Comparator**
 - Single/Dual Input
 - Variable Reference

- **Hold – Sample and hold**

- **OscillatorSine**
 - Subject to internal reference voltage error

- **Voltage (+/- 3 VDC)**
 - Subject to internal reference voltage error
ANx20 Standard Library – Multiplier

- Multiplier
 - Uses SAR (Input Y is quantized)
 - Subject to internal reference voltage error
 - Optional sample and hold on input X to equalize sampling time of two inputs (uses chip resources)
ANx20 Standard Library – LUT

- **PeriodicWave**
 - Half-cycle/Output Hold
 - Uses LUT to generate a user-defined periodic sequence of output voltages
 - Documentation has help with loading the LUT

- **TransferFunction**
 - Half-cycle/Output Hold
 - Uses the SAR and LUT to perform A/D conversion on the input and generate the appropriate user-defined output voltage